
ACD201

ACD201 Dumps
ACD201 Braindumps
ACD201 Real Questions
ACD201 Practice Test
ACD201 Actual Questions

killexams.com

Appian

Appian Certified Senior Developer - 2025

https://killexams.com/pass4sure/exam-detail/ACD201

https://killexams.com/exam-price-comparison/ACD201

Question: 470

In a banking application, a Custom Data Type named AccountTransaction is used to store transaction
details, including a nested CDT for audit logs. The application requires that audit logs be retained for
compliance but not loaded into memory for every transaction query to optimize performance. You decide
to separate the audit logs into a different database table. Which approach best implements this separation
while maintaining referential integrity?

A. Create a new CDT for audit logs and link it to AccountTransaction using a foreign key
B. Store audit logs in a separate data store and manage relationships via process models
C. Use a database view to combine AccountTransaction and audit logs for queries
D. Flatten the audit logs into the AccountTransaction CDT with a JSON field

Answer: A

Explanation: Creating a new CDT for audit logs and linking it with a foreign key ensures referential
integrity and allows separate storage, reducing memory usage during transaction queries. Storing audit
logs in a separate data store complicates relationships and maintenance. A database view is not suitable
for separating data storage. Flattening audit logs into a JSON field sacrifices structure and query
efficiency.

Question: 471

An Appian application is experiencing user-facing performance issues, with users reporting that a task
form takes 10 seconds to load. The form includes a complex SAIL interface with multiple a!queryEntity()
calls to fetch data from a database with millions of rows. The Process Monitoring tab shows high
memory usage for the process model, and the application server logs indicate frequent garbage collection
pauses. Which actions should you take to resolve these performance concerns?

A. Optimize the a!queryEntity() calls by adding a!queryFilter() to reduce the result set
B. Increase the server’s garbage collection frequency to reduce pauses
C. Use local variables instead of process variables to store query results in the interface
D. Implement database views to pre-aggregate data before querying from Appian

Answer: A, C, D

Explanation: Adding a!queryFilter() to a!queryEntity() reduces the number of rows retrieved, improving
query and interface performance. Using local variables in the interface minimizes memory usage
compared to process variables, which persist across the process. Implementing database views to pre-
aggregate data reduces the data processed by Appian, improving load times. Increasing garbage collection
frequency may worsen performance by causing more frequent pauses, so it is not a solution.

Question: 472

In a telecom application, you are designing a data model for customers, subscriptions, and plans. Each
customer has multiple subscriptions, and each subscription is linked to one plan. The database must
support queries for total subscriptions by plan. Which schema is best?

A. Two tables: Customers (customer_id, name, subscription_id, plan_id), Subscriptions (subscription_id,
plan_id, start_date)
B. Three tables: Customers (customer_id, name), Subscriptions (subscription_id, customer_id, plan_id,
start_date), Plans (plan_id, name)
C. Three tables: Customers (customer_id, name), Subscriptions (subscription_id, customer_id,
start_date), Plans (plan_id, subscription_id, name)
D. Four tables: Customers (customer_id, name), Subscriptions (subscription_id, customer_id, start_date),
Plans (plan_id, name), Subscription_Plans (subscription_id, plan_id)

Answer: B

Explanation: The schema with Customers, Subscriptions, and Plans tables models the one-to-many
relationships (customer to subscriptions, plan to subscriptions) correctly. It supports querying
subscriptions by plan via joins, ensuring normalization and efficiency. Other options introduce
redundancy or incorrect relationships.

Question: 473

You are configuring security for an Appian application with a record type ProjectData. The record type
includes a field budget that should only be editable by the ProjectManager group. Other groups, such as
TeamMember, should view the field but not edit it. Which configuration achieves this?

A. Use restrictFields("budget", ["ProjectManager"], ["TeamMember"])
B. Set ProjectManager to Editor role for ProjectData
C. Use restrictFields("budget", ["ProjectManager"], [], ["TeamMember"])
D. Set TeamMember to Viewer role for ProjectData

Answer: C, D

Explanation: The restrictFields("budget", ["ProjectManager"], [], ["TeamMember"]) function allows
ProjectManager to edit budget, denies editing to others, and permits TeamMember to view it. Setting
TeamMember to Viewer role ensures they can view all fields without editing. The incorrect restrictFields
syntax in option A omits the edit restriction, and setting ProjectManager to Editor is unnecessary.

Question: 474

In an insurance application, a Record Type named PolicyRecord is used to display policy details from a
data store connected to a MySQL database. The record type uses data sync with a 20-minute refresh
interval. A new requirement mandates that policy cancellations are reflected in the record list within 2
seconds. Which configuration meets this requirement?

A. Modify the record type to use a custom sync expression for cancellations
B. Create a process model to trigger a!refreshRecordData() for cancellations
C. Disable data sync and use a!queryRecordType() for real-time updates
D. Use a database trigger to notify Appian via a web API

Answer: A

Explanation: A custom sync expression prioritizes policy cancellations, meeting the 2-second requirement
with minimal overhead. A process model for refreshing data is resource-intensive. Disabling data sync
increases latency for all queries. A database trigger with a web API adds complexity and latency.

Question: 475

A financial application in Appian retrieves transaction data using a!queryEntity() with a complex join
across three tables, each with 50,000 rows. The query takes 15 seconds to execute, impacting user
experience. Which optimization techniques should you apply?

A. Add indexes on the join columns
B. Use a materialized view to store the joined data
C. Denormalize the tables to reduce joins
D. Increase the database connection pool size

Answer: A, B, C

Explanation: Indexes on join columns speed up data retrieval for the query. A materialized view
precomputes the joined data, reducing query time for static datasets. Denormalizing tables reduces the
need for joins, improving performance. Increasing the connection pool size does not optimize the query
itself.

Question: 476

You are configuring a data store for an Appian application connecting to a MySQL table 'Tickets'
(ticket_id, event_id, purchase_date, price). The CDT must support concurrent updates with minimal
conflicts. Which configuration is best?

A. Configure a database trigger to manage conflicts and map the CDT without locking
B. Enable optimistic locking with @Version and use a!writeToDataStoreEntity() for updates
C. Use pessimistic locking in the CDT and configure a process model for updates

D. Set up auto-increment on ticket_id and disable locking

Answer: B

Explanation: Optimistic locking with the @Version annotation detects conflicts during concurrent
updates, and a!writeToDataStoreEntity() supports efficient updates. Pessimistic locking is not supported,
triggers are less integrated, and disabling locking risks data integrity.

Question: 477

In an Appian application for managing employee expenses, a custom plug-in is developed to integrate
with an external payment gateway. The plug-in processes payment requests and returns transaction IDs.
To ensure reliability, the plug-in must handle network timeouts and retry failed requests. Which
configurations are necessary to implement this functionality?

A. Implement exponential backoff for retry logic
B. Use Appian’s HTTP Smart Service for payment requests
C. Configure timeout settings in the plug-in’s HTTP client
D. Log retry attempts for debugging

Answer: A, C, D

Explanation: Implementing exponential backoff for retry logic ensures that retries are spaced out to avoid
overwhelming the external system. Configuring timeout settings in the plug-in’s HTTP client prevents
the plug-in from hanging on slow responses. Logging retry attempts aids in debugging and monitoring
reliability. Using Appian’s HTTP Smart Service is not appropriate, as the plug-in should encapsulate the
payment logic for reusability and modularity.

Question: 478

You are optimizing a materialized view for an Appian application analyzing customer purchase patterns.
The view aggregates data from the Purchase, Customer, and Product tables, grouping by CustomerID and
ProductCategory. The view is refreshed every 12 hours, but queries are slow due to frequent filtering on
ProductCategory. Which action will most effectively improve query performance?

A. Add a non-clustered index on ProductCategory
B. Use a stored procedure to rebuild the view
C. Increase the refresh interval to 24 hours
D. Use a!queryEntity() with pagination

Answer: A

Explanation: Adding a non-clustered index on ProductCategory will significantly improve query

performance, as it allows the database to quickly locate rows filtered by ProductCategory, which is
frequently used in queries. A stored procedure to rebuild the view adds complexity without addressing
query speed. Increasing the refresh interval does not improve query performance. Pagination in
a!queryEntity() helps Appian performance but not the view’s query speed.

Question: 479

You are designing a relational data model for a healthcare application in Appian that tracks patient visits,
doctors, and medical procedures. Each patient can have multiple visits, each visit is associated with
exactly one doctor, and multiple procedures can be performed during a visit. A procedure can be
performed across multiple visits. The database must support efficient querying for a report showing all
procedures performed by a doctor in a given month. Which database schema design best supports this
requirement while adhering to third normal form (3NF)?

A. Three tables: Patients (patient_id, name), Visits (visit_id, patient_id, doctor_id, date), Procedures
(procedure_id, visit_id, procedure_name)
B. Four tables: Patients (patient_id, name), Doctors (doctor_id, name), Visits (visit_id, patient_id,
doctor_id, date), Visit_Procedures (visit_id, procedure_id, procedure_name)
C. Five tables: Patients (patient_id, name), Doctors (doctor_id, name), Visits (visit_id, patient_id,
doctor_id, date), Procedures (procedure_id, name), Visit_Procedures (visit_id, procedure_id)
D. Two tables: Patients (patient_id, name, doctor_id, visit_id, date), Procedures (procedure_id, visit_id,
procedure_name)

Answer: C

Explanation: To satisfy the requirements and adhere to 3NF, the schema must normalize relationships and
avoid redundancy. The correct design requires separate tables for Patients, Doctors, Visits, Procedures,
and a junction table (Visit_Procedures) to handle the many-to-many relationship between visits and
procedures. This ensures that procedure names are stored only once in the Procedures table, and the
Visit_Procedures table links visits to procedures efficiently. The schema supports the report query by
allowing joins between Doctors, Visits, and Visit_Procedures to filter by date and doctor. Other options
either fail to normalize the many-to-many relationship or introduce redundancy, violating 3NF.

Question: 480
In an Appian application for managing legal cases, a Smart Service is used to generate case summaries
based on case data and related documents. The Smart Service must handle large datasets and ensure high
availability. Which configurations ensure the Smart Service is robust and scalable?

A. Implement caching for frequently accessed data
B. Configure the Smart Service to run synchronously
C. Use connection pooling for database queries
D. Monitor performance metrics via the Appian Health Check

Answer: A, C, D

Explanation: Implementing caching for frequently accessed data reduces database load and improves

performance. Using connection pooling for database queries enhances scalability by reusing connections.
Monitoring performance metrics via the Appian Health Check helps identify and address bottlenecks.
Running the Smart Service synchronously can block the process, reducing scalability.

Question: 481

Your Appian application includes a database trigger that automatically updates a status column in a table
when a record is modified. The trigger is defined as follows:

CREATE TRIGGER update_status
AFTER UPDATE ON orders
FOR EACH ROW
BEGIN
IF NEW.total_amount > 1000 THEN
SET NEW.status = 'High Value';
ELSE
SET NEW.status = 'Standard';
END IF;
END;

During testing, you notice that updates to the orders table via a Write to Data Store Entity smart service
occasionally fail with a “trigger execution error.” What is the most likely cause of this issue?

A. The smart service does not have sufficient database permissions to execute the trigger.
B. The trigger attempts to modify the NEW.status column, which is not allowed in an AFTER UPDATE
trigger.
C. The trigger syntax is incorrect due to a missing delimiter.
D. The data store entity does not include the status column in its CDT.

Answer: B

Explanation: In an AFTER UPDATE trigger, modifying the NEW record’s columns is not allowed, as
the update has already occurred. The trigger attempts to set NEW.status, which causes an error. The
smart service’s permissions, trigger syntax, and CDT configuration are not directly related to this issue,
as the error stems from the trigger’s logic.

Question: 482

In an Appian application for managing clinical trials, a custom plug-in integrates with a lab management
system to retrieve test results. The plug-in uses REST APIs and must handle authentication via JWT
tokens. Which steps ensure secure implementation?

A. Store JWT tokens in a connected system object
B. Use HTTPS for API calls

C. Log JWT tokens for debugging
D. Implement token refresh logic

Answer: A, B, D

Explanation: Storing JWT tokens in a connected system object ensures secure credential management.
Using HTTPS protects data in transit. Implementing token refresh logic ensures the plug-in remains
functional when tokens expire. Logging JWT tokens is a security risk and should be avoided.

Question: 483

A healthcare application uses a Record Type named PatientVisit to display visit details from a data store
backed by a MySQL database. The record type includes a calculated field that determines patient priority
based on visit frequency. Users report slow performance when sorting the record list by this field. Which
optimization improves sorting performance?

A. Cache the calculated field results in a separate CDT
B. Move the calculated field logic to a stored procedure
C. Create a database index on the fields used in the calculated field
D. Use a!queryRecordType() with pre-computed sorting

Answer: C

Explanation: A database index on the fields used in the calculated field optimizes sorting by enabling
efficient data retrieval. A stored procedure adds complexity without leveraging Appian’s query engine.
Caching in a CDT risks stale data. Using a!queryRecordType() with pre-computed sorting does not
address the root cause of slow database queries.

Question: 484

A retail application uses a data store to manage a table of customer orders, with a CDT named
OrderDetails that includes fields for order ID, total, and status. The application experiences performance
issues when querying orders due to a large number of nested CDTs. Which two actions optimize query
performance?

A. Denormalize the CDT structure to reduce nested relationships
B. Create database indexes on frequently queried fields
C. Increase the database connection pool size in Appian
D. Use a!queryEntity() with batch processing for large queries

Answer: A, B

Explanation: Denormalizing the CDT structure simplifies queries by reducing joins, improving

performance. Creating database indexes on frequently queried fields speeds up data retrieval. Increasing
the connection pool size does not address query complexity. Batch processing with a!queryEntity() helps
with large datasets but does not optimize the data model.

Question: 485

Your organization is implementing an Appian application for managing customer feedback. A subprocess
handles feedback analysis by calling an external sentiment analysis API. The subprocess must handle API
rate limits and retry failed requests. Which configuration ensures reliable API integration?

A. Enable activity chaining for API calls
B. Store API responses in a process variable
C. Use a Timer Event to delay API calls
D. Implement retry logic with exponential backoff

Answer: D

Explanation: Implementing retry logic with exponential backoff ensures reliable API integration by
spacing out retries to respect rate limits and handle transient failures. Activity chaining is unrelated to
API reliability. A Timer Event delays calls but does not address rate limits or failures. Storing API
responses in a process variable increases memory usage without improving reliability.

Question: 486

You are designing a database trigger for an Appian application managing inventory. The trigger must
update a summary table with total stock whenever items are added or removed from the inventory table.
Given the SQL below, which modification ensures accurate stock updates?

CREATE TRIGGER update_stock_summary
AFTER INSERT ON inventory
FOR EACH ROW
BEGIN
UPDATE stock_summary
SET total_stock = total_stock + NEW.quantity
WHERE warehouse_id = NEW.warehouse_id;
END;
A. Change AFTER INSERT to BEFORE INSERT
B. Add a trigger for DELETE operations
C. The trigger is correct as written
D. Replace NEW.quantity with OLD.quantity

Answer: B

Explanation: The trigger handles INSERT operations but does not account for DELETE operations,
which would also affect total stock. Adding a DELETE trigger to subtract quantities ensures accurate
updates. BEFORE INSERT is unnecessary as stock updates should occur after the insert commits.
OLD.quantity is not available for INSERT triggers, and the trigger is incomplete without DELETE
handling.

Question: 487

You are developing a process model that integrates with an external system via a web API. The process
model uses a Call Integration smart service to invoke a POST request, passing a JSON payload
constructed using an expression rule. During testing, the integration fails with a 401 Unauthorized error.
The connected system is configured to use OAuth 2.0 Client Credentials Grant for authentication. Which
two actions should you take to resolve the authentication issue?

A. Verify that the client ID and client secret are correctly configured in the connected system.
B. Switch the authentication method to Basic Authentication for simplicity.
C. Ensure the connected system has a valid access token endpoint URL.
D. Modify the expression rule to include authentication headers in the JSON payload.

Answer: A, C

Explanation: For OAuth 2.0 Client Credentials Grant, the connected system must be configured with a
valid client ID, client secret, and access token endpoint URL to obtain an access token. Verifying these
configurations ensures proper authentication. Including authentication headers in the JSON payload is
incorrect, as Appian’s connected system handles authentication automatically. Switching to Basic
Authentication is not necessary and may not meet security requirements.

KILLEXAMS.COM

https://killexams.com/search

